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A straightforward synthesis of fluorescent tris-meta-substituted triphenylamines (m-TPAs) is presented.
These new fluorophores display a unique feature that is a remarkably high Stokes shift up to 250 nm, as
compared to their para counterparts. Although the meta substitution is made at the expense of the quan-
tum yield, the latter is maintained at an appreciable level (5%) making the m-TPAs a new class of fluoro-
phores adaptable to a large range of applications from biology to materials science.

� 2010 Elsevier Ltd. All rights reserved.
Rapid development of fluorescence imaging and microscopy
technologies in recent years has stimulated the emergence of
sophisticated new fluorescent dyes displaying specific advantages
including high quantum yield (UF), high photostability, long life-
time, excimer formation, biocompatibility, chemical conjugability,
etc.

However, most of the dyes used in microscopy notably for bio-
logical purposes (fluorescein, rhodamine, boron-dipyrromethene
dyes, and cyanines) display a small Stokes shift (DSt), that is, a
small difference between the maximum of the lowest-energy
absorption band and the maximum of the emission band. Indeed,
in the case of the dyes listed above, DSt often lies in the 10–
50 nm range. This results in the overlap of both excitation and
emission bands leading to many disadvantages such as self-
quenching and reabsorption effects, as well as measurement error
due to excitation light and scattered light.1,2 This can be partially
corrected by the use of filters, which in turn may significantly de-
crease the collected emission especially in the case of a very small
Stokes shifts and thus reduce the detection sensitivity to a great
extent. In addition, the overlapping bands are incompatible with
applications for materials such as solid-state fluorescence3 or or-
ganic scintillators development4,5 which require fluorophores hav-
ing well-separated absorption and emission bands. To circumvent
this issue, strategies based on sophisticated systems containing up
to four dyes have been devised.6,7 Owing to three consecutive
transfers of excitation energy (FRET), excitation of the first fluoro-
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phore leads to the emission of the fourth, resulting in an apparent
Stokes shift of 240 nm. However, an intense research effort has
been focused on increasing DSt of common families of dyes.1,8

Consequently, there is an urgent need for simpler molecular
fluorophores displaying high DSt while maintaining appreciable
quantum yield. In regard to the wide range of possible applications
for such dyes, their synthesis should be straightforward and versa-
tile. For example, fluorescence properties of a common fluorogenic
scaffold could be easily tuned by the incorporation of peripheral
groups that modulate the electronic features of the ground and ex-
cited states.

In our ongoing research on fluorescent triphenylamine (TPA)
derivatives,9,10 we were pleased to find that the TPA fluorescence
properties could be dramatically modified by switching from the
extensively studied 4,40,400-substitution pattern toward the previ-
ously unknown 3,30,300-substituted derivatives (Scheme 1).

It is generally accepted that electron-donor and electron-accep-
tor groups linked to a benzene ring in a meta fashion are not con-
jugated. This is true in ground state. However, the work of
Zimmermann et al.11,12 and Yates and Sinha13 demonstrated that
electron delocalization occurred in the excited state.

As an example, fluorescence properties of the well-known
Green Fluorescence protein (GFP) have been elegantly tuned by
turning its natural para substitution pattern into the unusual
meta.14 The so-called ‘meta effect’ has been further investigated
by Lewis15,16 and others17,18 on various stilbene derivatives substi-
tuted on position 3 by a donor or acceptor group. They demon-
strated that the meta19 isomer of a TPA/stilbene hybrid, namely
(N,N-diphenylamino)stilbene, exhibits higher DSt than the para20

(107 nm vs 33 nm in hexane). This prompted us to further investi-
gate the fluorescence properties of the little studied 3,30,300-tris-
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Scheme 1. Reagents and conditions: (i) Pd2(dba)3, P(C12H9)(t-Bu)2, LiNH2, t-BuONa, dioxane, 85 �C, 30 h, 64%; (ii) phosphonate, NaH, THF, rt, 48 h, 58–64%.

Table 1
Spectroscopic properties of m-TPA (2m–4m) and p-TPA (2p–4p)a

Absorbanceb Emissionc DSt (nm)d

k (nm) e (M�1 cm�1) k (nm) UF

2m 311 108,270 499 0.05 188

4430 G. Bordeau et al. / Tetrahedron Letters 51 (2010) 4429–4432
substituted-TPA (m-TPA). The synthesis of the m-TPAs relies on the
key intermediate 3,30,300-tris-formyl-TPA (1m) which is easily ob-
tained in one step by a Buchwald reaction between the ammonia
equivalent LiNH2 and an aryl bromide followed by in situ deprotec-
tion (Scheme 1).21,22 It should be noted that the para counterpart
1p (Scheme 2), could also be synthesized in only one step which
compares favorably with the previously described two-step syn-
thesis.23,24 Starting from 1m, the use of the Wittig reaction allows
incorporation of various groups and hence the tuning of fluores-
cence properties.25 In this way, compounds 2m–4m were obtained
with a pure E,E,E stereochemistry and their photophysical proper-
ties compared to that of the para analogs 2p–4p previously synthe-
sized (Scheme2).10

Considering the m and p series, several observations can be
drawn (Fig. 1). Firstly the emission spectra of both the series are
identical in shape and reach their maxima at a similar wavelength.
Quantum yields (UF) of the m series are around ten times lower as
compared to those of their p counterparts (Table 1) but nonethe-
less stay in the range of the quantum yields of the widely used
stains Cy326 or thiazole orange27 (values near 0.05).

This fluorescence decrease due to para- versus meta-substituent
modification has been already observed in certain cases.18,20 In
particular, in the case of structurally related N-diphenyl trans-
aminostilbenes, the fluorescence quantum yields have been shown
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Scheme 2.
to strongly depend on the electron delocalization between the
branches (involving the lone pair of the central nitrogen) and on
the rate of the trans–cis photoisomerization in the excited state
that causes non-radiative decay.20

It might well be that these two features are modified for the
present vinyl TPA series while shifting from para to meta substitu-
tion. On the contrary, the absorption spectra maxima of the m ser-
ies are strongly blue-shifted by about 100 nm as compared to those
of their p counterparts and as expected from the lower degree of
electron delocalization within the meta connected branches in
the ground state. Finally, both m and p compounds exhibit
unstructured absorption spectra and very high molar extinction
coefficients that are significantly larger for compounds 2m and
4m (up to 100,000 M�1 cm�1) as compared to their 2p and 4p
isomers.

Interestingly, while absorption and emission spectra of the p ser-
ies overlap to some extent, those of the m series are totally resolved
2p 424 88,980 518 0.50 94
3m 331 96,610 527 0.04 196
3p 432 97,260 534 0.52 102
4m 325 91,570 509 0.06 184
4p 406 59,450 511 0.51 105
3me 332 568 236
3mf 327 572 245

a Recorded in chloroform at rt.
b At 10 lM.
c At 1 lM.
d Stokes shift.
e In EtOH.
f In MeCN. Quantum yields were measured using quinine bisulfate in 1 N H2SO4

as a reference.
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Figure 1. Normalized absorption spectra (dashed lines, recorded at 10 lM dye
concentration) and fluorescence spectra (plain lines, recorded at 1 lM dye
concentration) of m-TPA (in red) and their para counterparts (in blue) recorded in
dichloromethane at room temperature. Compounds 2m, 2p (A); 3m, 3p (B); and
4m, 4p (C).
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Figure 2. Normalized emission spectra of 2m (1 lM) recorded in various solvents
(from left to right: toluene, chloroform, ethyl acetate, dichloromethane, ethanol,
acetonitrile, DMSO) at rt.
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due to their impressive DSt. This phenomenon should reduce the
reabsorption effect to almost zero, thereby enabling the use of these
dyes in the aforementioned applications. DSt was further evaluated
by solvatochromism studies performed on 3m (Fig. 2, Table 1).

While absorption maxima are virtually independent from the
solvent used, emission maxima are red-shifted with increasing
polarity of the solvent, thus providing evidence for a strong inter-
nal charge transfer in the lowest singlet excited state.19,20 In partic-
ular, a DSt value of 245 nm was obtained with 3m in acetonitrile;
this impressively high DSt largely exceeds that of most other dyes
designed to exhibit high DSt.1,4,5,28–30

In conclusion, the novel 3,30,300-trisformyl compound 1m is
found to be a versatile and easy-to-synthesize precursor enabling
the preparation of fluorescent vinyl derivatives displaying excep-
tionally large DSt. This is illustrated herein by the three compounds
(2m, 3m, and 4m) which feature the m-TPA scaffold thus display-
ing base-to-base resolved absorption and emission spectra. Conse-
quently, the new family of m-TPA represents a robust starting
point for the development and fluorescence engineering of dyes
circumventing reabsorption problems.
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